MBI Videos

David Basanta

  • video photo
    David Basanta
    Cancer evolutionary dynamics result from the interplay between a heterogeneous tumor and the ecosystem which it inhabits. While beautiful work has shed light on the role of intra tumor heterogeneity and experimental techniques have allowed us to reconstruct the genetic paths that a cancer has followed in a patient, precious little has been done in understanding eco-evolutionary dynamics in cancer. In our group we have use mathematical and computational tools, integrating experimental data and challenged with clinical data, to study the bone ecosystem and its role in explaining the growth and progression of tumors. This will allow us to understand the interplay between the tumor and the bone, how that shapes its evolutionary dynamics and how treatments could be designed that take that into account.
  • video photo
    David Basanta

    Cancer is an evolutionary disease where, although mutations are thought to be random, selection clearly is not. Selection is driven by the interactions between the different types of tumor cells, other cells in the tumor microenvironment and the physical microenvironment itself. Game Theory in general and Evolutionary Game Theory in particular are mathematical frameworks in which to investigate the role of the interactions between cells with different phenotypes and traits in the evolutionary dynamics of a tumor. In this presentation I will introduce the history of Game Theory, some canonical games and then proceed to describe how it has been used to model cancer, the advantages of the approach and some shortcomings.

  • video photo
    David Basanta

    Abstract not submitted.

View Videos By